講座主題:Convergence analysis of weak Galerkin finite element variable-time-step BDF2 implicit scheme for parabolic equations
專家姓名:高夫征
工作單位:山東大學(xué)
講座時(shí)間:2025年05月23日 16:00-17:00
講座地點(diǎn):數(shù)學(xué)院大會(huì)議室341
主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院
內(nèi)容摘要:
In this report, we will introduce a fully discrete implicit method for parabolic problem. The variable-time-step BDF2 method is applied in time combining with the weak Galerkin finite element method in space. Optimal error estimates of O(h^r+τ^2) in H^1-norm and O(h^{r+1}+ τ^2) in L^2- norm are derived under the time-step ratio 0 < r_k ?4.8645. Numerical experiments confirm the theoretical findings. Furthermore, an adaptive scheme is introduced and validated to enhance the computational performance.
主講人介紹:
高夫征,山東大學(xué)數(shù)學(xué)學(xué)院教授,博士生導(dǎo)師,山東省計(jì)算數(shù)學(xué)專委會(huì)成員,泰山學(xué)者團(tuán)隊(duì)骨干成員(2010.06-2015.08),Review Editor in Frontiers in Physics-Statistical and Computational Physics(2022.10-)。美國(guó)阿肯色大學(xué)小石城校區(qū)訪問(wèn)學(xué)者(2012-2013),多次訪問(wèn)香港理工大學(xué)、清華大學(xué)數(shù)學(xué)系。
研究方向?yàn)槠⒎址匠虜?shù)值解法、流體力學(xué)中的數(shù)值方法,尤其是弱Galerkin有限元方法、局部間斷有限元方法、有限體積法等數(shù)值方法的分析與應(yīng)用研究。承擔(dān)完成國(guó)家級(jí)、省部級(jí)科研項(xiàng)目及橫向課題十余項(xiàng)。目前主持國(guó)家重點(diǎn)項(xiàng)目子課題1項(xiàng)。